Comparison of periprosthetic tissue digestion methods for ultra-high molecular weight polyethylene wear debris extraction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of periprosthetic tissue digestion methods for ultra-high molecular weight polyethylene wear debris extraction.

There is considerable interest in characterization of wear debris from polyethylene (UHMWPE) bearing components used in total joint replacement. To isolate UHMWPE wear debris, tissue samples must be excised from regions adjacent to revised UHMWPE implant components, followed by exposure to one of many available tissue digestion methods. Numerous studies demonstrate successful digestion, but the...

متن کامل

A comparison of the wear and physical properties of silane cross-linked polyethylene and ultra-high molecular weight polyethylene.

Cross-linked polyethylenes are being introduced widely in acetabular cups in hip prostheses as a strategy to reduce the incidence of wear debris-induced osteolysis. It will be many years before substantial clinical data can be collected on the wear of these new materials. Silane cross-linked polyethylene (XLPE) was introduced into clinical practice in a limited series of acetabular cups in 1986...

متن کامل

Simple colorimetric methods for determination of sub-milligram amounts of ultra-high molecular weight polyethylene wear particles.

New colorimetric methods are described for determination of sub-milligram amounts of ultra-high molecular weight polyethylene (UHMWPE) wear particles. These methods are based on the irreversible binding of the fluorescein-conjugated bovine serum albumin or the hydrophobic dye Oil Red O to wear particles. UHMWPE particles bind both substances from their solutions and thus decrease the absorbance...

متن کامل

Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity.

In this study the friction, wear and surface mechanical behavior of medical-grade ultra-high molecular weight polyethylene (UHMWPE) (GUR 1050 resin) were evaluated as a function of polymer crystallinity. Crystallinity was controlled by heating UHMWPE to a temperature above its melting point and varying the hold time and cooling rates. The degree of crystallinity of the samples was evaluated usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Biomedical Materials Research Part B: Applied Biomaterials

سال: 2009

ISSN: 1552-4973,1552-4981

DOI: 10.1002/jbm.b.31416